
Micro Hypervisor Verification:

Possible Approaches and Relevant

Properties

Hendrik Tews∗

Radboud Universiteit Nijmegen, The Netherlands

http://www.cs.ru.nl/∼tews

April 2, 2007

The SoS-group at the Radboud University Nijmegen participates in the
Robin project. The goal of this project is to develop a minimal trusted
computing base for virtualizing (multiple instances of different) distrusted
legacy operating systems in a secure way. With the resulting system it shall
be possible to use, for instance, Word on Microsoft Windows for composing
classified documents in a secure way. Thereby it is not necessary to trust
Windows in any way, the Windows instance that is used could even have
been compromised by an attacker already.

In this paper I give an short overview about the Nizza architecture that
is further developed in the Robin project. I further elaborate on our task at
Radboud University: To develop a verification approach for the underlying
micro hypervisor for relevant security properties.

1 Introduction

This paper gives some information about the Robin project.1 Robin is a European
project with four partners: Technical University Dresden and Secunet Security Networks
AG in Germany, ST Microelectronics in France and Radboud University Nijmegen in
the Netherlands. The aim of the project is to develop a trustworthy platform for legacy
operating-system virtualization, which I outline below. The task of the people at Dresden
University is to develop a new trusted computing base (whose properties are described

∗This work has been supported by the European Union through PASR grant 104600.
1See http://robin.tudos.org/

1



in Section 2), including a new micro-hypervisor operating system. The two industrial
partners do case studies and port the Nizza architecture to their products. Our aim in
Nijmegen is to develop and evaluate means and methods for the verification of system-
level software, in particular for the newly developed micro hypervisor. In the course
of the project we will develop methods that allow us to attempt the verification of
some properties of the micro hypervisor. (Our aim is not to reduce the number of
security bugs in the hypervisor. For that we would use techniques like extended static
checks [ECCH00] or model checking.)

In this paper I explain the Nizza architecture for exploiting the power of legacy oper-
ating systems in a trustworthy way (Section 2). I describe then the specific difficulties
that arise from the verification of systems-level code (Section 3). Finally I tell about our
verification approach (Section 4) and some interesting properties that we would like to
prove and some properties that we cannot yet (Section 5).

2 The Nizza architecture for confidentiality and integrity

We are facing more and more often situations where security considerations are in conflict
with usability requirements. For instance:

• Mobile phones and PDAs store private data, which one usually wants to protect.
Furthermore, these devices are used more and more for monetary transactions. For
security reasons one should only run little carefully selected software on them.

However, mobile phones and PDAs are also used as mobile web browsers. If pos-
sible one wants to run a full blown web browser on them to enjoy the latest bells
and whistles of the web. With its numerous security holes any of the major web
browsers basically opens the mobile phone or PDA for those who really want ac-
cess. The problem becomes even worse when people want to download software,
for instance games, from the internet.

• The secretary of an embassy has to work with classified data. However, she might
also want to install skype to chat with friends at home over lunch break.

• PCs at home are used for many applications and lots of software from very different
sources gets installed on them. The current discussion in Germany about online
spying on suspected individuals demonstrates that it is currently far to easy to
break into a PC. Online banking is obviously only made for people who do not
care about their money.

One solution to solve the conflict between security and usability is to use two physically
separated devices, a classified one for the data one wants to protect and an unclassified
one to play with. There is of course the question what operating system to install on
the classified system. With the currently available systems the classified system can
only stay secure if it is not connected to the internet. This renders the classified system
pretty much useless for private use, of course.

2



hardware enforced
protection boundary

legacy
OS

legacy
OS
encapsulated

GUI
minimal secure secure

storage
. . .virtual machine

monitor

encrypt
decrypt

trusted
viewer

trusted
applications

loader

signature
generation

micro hypervisor

conventional hardware

trusted servers

user mode

kernel mode

trusted computing
base (TCB)

ad
dr

es
s 

sp
ac

e 
bo

un
da

ry

Figure 1: Nizza security architecture

The Robin project aims to provide a better solution for the just described security-
usability dilemma. The basic ideas are captured in the Nizza architecture [HHF+05],
see Figure 1, that I am going to elaborate on in the following. I emphasis that all the
following material about Nizza is my reflections of the original papers [HHF+05, FH05,
FH03, HPHS04, Fes06].

In the slightly simplified version of the Nizza architecture shown here the software on
the system is categorised into four kinds:

1. The micro kernel or micro hypervisor (simply referred to as hypervisor in the
following); the only piece of software that can fully control the hardware.

2. Trusted servers; which yield functionality that has been exported from the kernel
into user space.

3. Trusted applications; which are small application programs that run directly on
the hypervisor. (The use case that I describe below will require three trusted
applications. In principle also non-trusted applications can run directly on the
hypervisor.)

3



4. Untrusted legacy software; which is typically running inside a legacy guest oper-
ating system.

The Nizza architecture is able to provide confidentiality (only authorised people have
access to sensitive data) and integrity (unauthorised changes of the sensitive data are
easy to detect). As discussed here, the Nizza architecture cannot ensure availability (ser-
vices can be used whenever necessary), through it requires an attacker of extraordinary
strength to break the system for more than a few hours.

The hypervisor, the trusted servers and the trusted applications belong to the trusted
computing base (TCB). The TCB is that part of the code on which the provided security
hinges. In the Nizza architecture important services (such as mass storage from a hard
disk) can be provided by untrusted components without comprising security. Because
of the modular approach the TCB can vary from application to application (a trusted
server that is not necessary for one application need not be trusted, thus it is outside of
the TCB)

Let me now explain how the Nizza architecture works. The base consists of a micro
kernel or micro hypervisor together with a few trusted servers. The hypervisor is the
only piece of software that runs in the most privileged kernel mode of the CPU. The
trusted servers provide functionality that is essential for the whole system, but which
does not necessarily need to be included in the kernel.

On top of this minimal trusted computing base one can run stand-alone applications
in parallel with (several instances of) legacy operating systems such as linux or windows.
The new hypervisor that is currently developed within the Robin project supports the
virtualization features of the new x86 CPUs. Legacy operating systems such as Linux or
Windows can therefore run unmodified as fully virtualized guest operating systems. All
the guest OS’s, the trusted servers and all applications are separated from each other by
an address-space boundary. If desired and permitted two such parties can communicate
via interprocess communication (IPC) or set up a region of shared memory.

The system will also permit to enclose an application or a guest OS in a compartment
such that it can communicate with the outside world only via dedicated channels. This
feature makes it possible to ensure security with a minimal TCB while maintaining
usability. This is best explained with an example.

Assume a user wants to work with sensitive data that should be readable only for a
dedicated recipient and should further be concealed from any possible attacker. Assume
further that for this work he does not want to give up his highly customised working
environment and his favourite editor. I will refer to this working environment as con-
venience software because the hypothetical user could of course create and send the
sensitive data without his much beloved 3D window manager. With Robin however, the
user can use as much convenience software as he likes without compromising security.

For working on the sensitive data the user starts a new copy of his favourite legacy
operating system (referred to as editor OS in the following) in a fully encapsulated
compartment with only one channel to communicate to the outside world. This channel
will be connected to a dedicated secure encryption application. The user can now work

4



on the sensitive data inside the new compartment. For inspiration he can browse the
internet using a different instance of his favourite legacy OS that runs as a separate
guest (referred to as browser OS). There is no danger, even if this browser OS instance
gets compromised and is completely taken over by a remote attacker. The hypervisor
and the secure GUI make sure that the attacker will not even become aware of the other
OS instance with the sensitive data inside. All the attacker can see is that mouse and
keyboard become inactive when the mouse gets close to certain areas on the screen.

When the work on the sensitive data is finished it is passed on to the secure encryption
application. Once the data is encrypted it can be passed into the browser OS instance to
be sent to the right receiver. The attacker can now only play a denial of service attack
and delete the encrypted data. The encryption makes sure that he can not fake it.

Assume now that an attacker of sufficient strength has managed to compromise the
installation media which was used for the users favourite legacy OS. Inside the editor
OS the spyware of the attacker can now see the sensitive data, however it cannot do
anything with it! There is only one channel to the outside and that is controlled by a
program that is not under the control of the attacker. The spyware could play a denial of
service attack or, a bit more sophisticated, it could replace the sensitive data of the user
to let him sign and sent data of the attacker. The latter case can easily be detected if the
user checks the data with a trusted viewer, which runs as secure application alongside
the guest OS’s. So even if the editor OS is compromised there is only the threat of a
denial of service attack.

It is important to notice here that all the convenience software, that is used in the
described scenario, is not part of the trusted computing base, that is, the user does not
need to trust its correctness. Encapsulation and encryption makes it even possible to
let the (possibly compromised) legacy OS drive parts of the hardware, for instance the
hard disk.

I believe I convincingly argued that the system can ensure confidentiality and integrity.
There are several ways to improve the availability of the system that I am not going
to discuss in detail. Adding redundancy (for instance starting multiple legacy OS’s of
possibly different versions for the same purpose) would make the attackers life much
harder. In order to make the system unavailable for a long period the attacker must
either be able to compromise a wide variety of legacy OS’s within seconds or he must
compromise all the available installation media for those legacy systems. However, an
attacker such strong would probably simply place a tank in front or the poor user to
achieve his goals.

Users that need to ensure their availability under all circumstances (like police stations
or embassies) must equip the system displayed in Figure 1 with an additionally trusted
application that can be used as fall-back system. The fall-back system has to have
sufficient independent communication facilities (like a dedicated telephone line). It will
of course only provide most basic functionality and therefore be much simpler than the
preferred convenience software.

Let me give some more background and details about some components of the Nizza
architecture. Work on some components goes back to 1995. At the moment a fully

5



working system is available on a demo CD [Fes06]. It uses the Fiasco micro kernel [HH01]
as basis. A major limitation of Fiasco is that it supports neither hardware virtualization
nor faithful software virtualization. Therefore, the system on the demo CD supports only
para-virtualized or ported guest operating systems. There is currently only one guest
available: L4Linux, the linux port of the OS group at Dresden University to Fiasco.

As said, the new hypervisor developed in Robin will support a variety of guests through
the virtualization features of recent CPUs. The hypervisor will be the lowest software
component of the system and the only one that fully controls the CPU. The hypervisor
stands in the tradition of Fiasco and the L4 micro kernel family. It only implements those
services that are absolutely necessary: address or memory spaces (especially separation
of address and memory spaces), process/task management, inter process communication
(IPC) with delegation of resources (especially memory) and round robin scheduling with
fixed priorities. There are no traditional device drivers in the hypervisor. It only contains
drivers for the interrupt controller and the clock. The hypervisor runs in root mode
level 0. All other software components of the system have less privileges. They run
either in level 3 (root or non-root mode) or in non-root mode level 0 (for kernels of guest
operating systems).

The minimalistic kernel design approach makes it necessary that some additional
components are always needed. Those components are called trusted servers and they
provide functionality that is traditionally provided in the kernel. One of these servers
provides secure persistent storage. This storage is mainly needed for cryptographic keys,
efficient mass storage can be provided by an encapsulated legacy driver outside of the
TCB. The loader is responsible for loading new trusted servers. As you will realize by
now the loader itself does not need a hard disk driver, it can rely on an untrusted driver
and only check that the data it gets has not been tampered with.

The minimal secure GUI server is far simpler than a stripped down version of X or even
a window manager. The minimal secure GUI must only provide the following services:

• multiplex several application windows onto the real screen,

• redirect input from keyboard and mouse to applications,

• separate applications from each other, such that one application cannot read the
contents of another application window,

• unforgably identify application windows on user request to detect trojan horses

Feske and Helmuth showed that one can provide this functionality in less than 1,500
lines of code [FH05].

The often emphasised possibility to rely on untrusted legacy drivers (or even whole
legacy operating systems) for certain functionality has two important advantages:

• the functionality is outside of the TCB, thus reducing the TCB size, and

• one can rely for free on the good support of diverse and new hardware that is
present in some legacy OS’s.

6



The price to pay is, of course, that the system becomes vulnerable to denial of service
attacks.

3 Challenges of low-level system-software verification

The task of the group in Nijmegen in the Robin project is to develop means and meth-
ods for a mechanical verification of the hypervisor, which forms the basis of the Nizza
architecture. The reason for verification is clear: In the long run one wants mathemati-
cally sound proofs that the hypervisor fulfils its security promises. A verification of the
hypervisor is a very challenging project for a number of reasons.

C++ source code Currently, there seems to be no convincing alternative to C/C++
for kernel programming. Consequently the hypervisor is written in C++. C++ programs
are more difficult to formalise then, say, Haskell or Clean programs, for a number of
reasons:

• The C++ standard [Int98] is relatively vague in order to permit conforming C++
implementations on the weirdest platforms. For instance the signed integral types
are not required to contain negative numbers. Further, casts between different
pointer types might change the pointer (to satisfy alignment requirements), except
for the case where one casts to void * and back to the original pointer.

Because of the vagueness of the C++ standard almost every program relies in
some way on platform or compiler specific properties. Consequently, a formal-
isation of C++ program must incorporate some properties of the specific C++
implementation that is used to compile the program.

• The template mechanism of C++ alone is Turing complete [Vel]. This means the
compiler can be forced to do arbitrary computations at compile time. A formali-
sations of C++ templates is accordingly difficult.

The micro hypervisor will only use few templates. If they are getting too difficult
we will work with the template instantiations instead.

• Type casts and goto-jumps are features that are traditionally not handled in text-
books on program semantics. However, it is impossible to write a micro hypervisor
without typecasts and to avoid unduly performance penalties one needs some kind
of unstructured jump such as setjmp/longjmp [lon] at a few places.

Embedded assembly code and direct hardware manipulations For operations that
are not supported in C++ (mostly direct hardware manipulations) the hypervisor sources
will contain some assembly code, mostly in the form of inlined assembly. Assembly code
is needed at least for the following operations:

• Access to hardware registers, such as those from the APIC (Advanced Pro-
grammable Interrupt Controller), but also special CPU registers, such as CR3

7



hypervisor source code
(Semantics of the)

Hardware model
Semantics of
data types

hypervisor interface specification The hardware model and the semantics of data
types provide the basic operations and proper-
ties for the verification of the hypervisor. For
hardware data types the hardware model relies
on the semantics of data types. Technically

Φdata types , Φhardware ⊢ ϕ(hypervisor)

where ϕ is one property from the specification,
such as termination without runtime type er-
rors.

Figure 2: Robin verification approach

(page directory base register), EFLAGS (the flags register), the global descriptor
table, the interrupt descriptor table, the task segment register and the feature
control registers CR0 and CR4.

• Embedding special instructions in the code, such as IRET (return from interrupt),
INVLPG (invalidate a TLB entry).

• Manipulating the stack frame to access and modify parameters of system calls or
for programming non-local exists similar to longjmp.

Nonstandard program environment The hypervisor runs like usual programs in vir-
tual memory. However, the hypervisor manipulates the virtual memory mapping itself.
Some parts of the memory are visible multiple times at different virtual addresses. One
can therefore have very subtle aliasing: A variable x at address a1 can be changed by
writing to the totally different address a2.

The hardware manipulations that the hypervisor must perform bear the possibility
of subtle errors. Certain bits in hardware data structures, such as the page directory
entries, must be zero. A more subtle problem comes with the translation look-aside
buffer (TLB). The TLB is a special kind of cache that caches page-directory traversals.
As a cache the TLB is not transparent, which means, when changing a page-directory
or page-table entry one must manually invalidate the TLB before using the new address
mapping. Otherwise, depending on the execution history, the old mapping, still cached
in the TLB, might be used.

4 A verification approach for a Micro Hypervisor

In this section I explain the approach that we are planning to use for the verification of
the micro hypervisor. The approach is depicted in Figure 2, it has already been worked

8



out in the VFiasco project [HT05, HT]. Our approach heavily relies on the interactive
theorem prover PVS [ORR+96]. The input language of PVS is higher-order logic enriched
with predicate subtyping and some other forms of dependent types. Higher-order logic
contains a complete lambda calculus. For the verification one therefore models the
system at hand in a functional way inside PVS and later uses the prover component of
PVS to establish theorems about it.

Our verification approach uses source code verification, that is we translate the C++
source code into a set of specific functions that are defined in the PVS input language.
Source code verification also means that we do not directly verify the object code that will
really be running. However, source code verification lets us profit from the relatively high
abstraction level present in the source code (which is lost in object code). A connection
to the real object code is vaguely planned for the far future.

In our approach the translation of the C++ code into PVS depends on the hardware
model and the semantics of data types. Both, the hardware model and the semantics
of data types are PVS specifications that are currently developed. As expected the
semantics of data types deals with C++ data types in PVS. Our semantics of C++ data
types exploits underspecification to make it possible to detect erroneous type casts and
wrong implicit type conversions (like, for instance, reading data from a union with the
wrong type), see [HT03].

The hardware model formalises an abstract model of the x86 hardware inside PVS. It
provides physical memory, virtual memory with address translation via page directories,
some kind of TLB and much more. The hardware model does not blindly model the
real hardware. Instead the hardware is modelled in such a way that certain subtle
programming errors yield a specific error state instead of doing nonsense (like the real
CPU). For instance the attempt to interpret a string as a page directory entry yields an
abnormal result value. This kind of error checking works even for the hardware initiated
page directory traversals done during address translation.

In order to translate C++ into PVS we use a denotational semantics for (a subset of)
C++. This denotational semantics has been developed partly already in the VFiasco
project. It correctly treats type casts, goto jumps and all the other complications that
I pointed out in the preceding section. One can view the hardware model and the
semantics of data types as providing the basic building blocks of our denotational C++
semantics. In our design the three components (C++ semantics, hardware model and
data types) are relatively independent from each other. It is therefore possible

• to add additional axioms to the data types, for instance, to model a compiler
specific assumption about the size of some data types or the precise behaviour of
some type casts.

• to add new operations to the hardware model

• to use different versions of the hardware model for different pieces of the hypervisor.
The boot code of the hypervisor can be verified against physical memory and the
hardware independent parts can be verified against a traditional, untyped memory
model.

9



hardware
model

data type
axiomatization

C++ sources
with annotations

Semantics compiler
(using Olmar)

logical
annotations

semantics
in HOL

PVS

external
specification

Figure 3: Approach for source code verification

• to adopt the semantics for new C++ features or compiler specific C++ constructs.

Figure 3 depicts the data flow of our verification approach. A semantics compiler
translates the C++ source code into its semantics in higher-order logic and outputs this
semantics as PVS source code. There will be two kinds of annotations in the source code.
The first kind influences the syntactic form of the output. It will for instance be possible
to place the semantics of a block or a group of statements into a separate function, in
order to make it possible to modularise the verification. The second kind of annotations
contains specifications for the code similar to JML [BCC+05]. The semantics compiler
translates these specifications into PVS proof obligations.

The hardware model and the data type axiomatisation are directly developed in PVS.
From the PVS point of view they provide declarations for all the function that appear
in the output of the semantics compiler. With all the different pieces loaded in PVS one
can start to prove hand-written, external specifications of the hypervisor.

The semantics compiler translates the sources of the program into semantic functions
that precisely model the behaviour of the original source code. A semantic function is a
state transformer of the following form2

State −→
ok :

State ⊎
pagefault :

State × Page fault info ⊎
hang :

1 ⊎
fatal :

1 ⊎ · · ·

Here State is a set of machine states provided by the hardware model. Every state
contains the contents of the physical memory and the contents of some important control
registers (such as virtual address mapping or the stack pointer). The disjoint union on

2The symbol ⊎ depicts disjoint union. Disjoint union unites two sets without identifying common

elements. Formally it is defined as A ⊎ B
def
= {0} × A ∪ {1} × B. The notion

ok :

State provides a
meaningful name for the numerical tag that is attached to the elements of State. The symbol 1

stands for the one element set. It is the mathematical counterpart of the unit and void types found
in many programming languages.

10



the right hand side describes the possible results of a state transformer. If no abnormal
condition occurs it yields a successor state tagged with ok. If a page fault occurs it yields
a successor state plus some additional information. A result tagged with hang means
that the program did not terminate (for instance because of a nonterminating while loop
or a page fault that keeps occurring at the same instruction). The result fatal is reserved
for serious errors such as TLB inconsistency or reserved bit violations.

State transformers can be composed in the obvious way: If the first state transformer
yields a result tagged with ok the result state is passed into the second state transformer.
If any abnormal conditions occurs the second state transformer is skipped and the result
of the composition is the abnormal result of the first state transformer.

The hardware model provides the basic state transformers for reading to and writing
from memory and for reading and writing the control registers. The semantics compiler
composes the basic state transformers from the hardware model to build the semantics
of its input program.

Program verification proceeds by reasoning in PVS over a nontrivial state transformer
that represents the semantics of some source code. This is mostly done by applying a
start state to the state transformer and proving properties of the result (for instance that
the result is not tagged fatal). Such a verification could equivalently be performed by
computing the weakest precondition of the verification goal with respect to the program.

A slightly different view on the verification is as follows: The hardware model defines a
state machine. The basic state transformers of the hardware model describe the actions
of the state machine. The program is symbolically executed on top of the state machine.
Properties are derived from the state changes that one observes.

5 Verification goals for the Robin Micro Hypervisor

The preceding section made very clear that the precision of the verification hinges on
the hardware model. With precision of the verification I refer to the amount and kind
of errors whose absence is proved with a successful verification.

It is our aim to make the hardware model precise enough to let it catch the following
kinds of errors:

• Common errors, such as dereferencing a null-pointer, nonterminating loops, wrong
results (wrt. the functional specification).

• Type errors. A type error occurs when one attempts to read an instance of some
type from a memory location where nothing or an instance of a different type has
been stored. The hardware model will be precise enough to catch type errors for
user code (for instance resulting from wrong pointer or address calculations) and
for implicit hardware memory accesses (for instance reading page directories)

• Virtual-memory aliasing errors. Virtual-memory aliasing occurs when the virtual
memory of two distinct variables is mapped to the same (or overlapping) physi-
cal memory regions. A virtual-memory aliasing error happens if one has virtual-
memory aliasing for two variables that are used at the same time.

11



• TLB errors (accessing a linear address3 for which the page directory or page table
entry might be inconsistent with the translation look aside buffer)

• allocation errors (using the same memory for different variables at the same time)

Within Robin we are not targeting the following errors:

• any kind of hardware error

• errors that can only occur on systems with more that one logical processors (i.e.,
on systems with multiple CPUs or with active hyper-threading)

At the moment we have several candidates of proof obligations that we would like to
verify for the hypervisor in the future.

Normal termination The hardware model contains a lot of checks (like for instance
reserved bit conditions and TLB consistency) that enter an abnormal state if they
are not fulfilled. In order to prove that the hypervisor does not contain this kind
of errors it is therefore sufficient to prove normal termination.

Dynamic type correctness Because of the type casts and the internal memory manage-
ment the type correctness of the hypervisor cannot be checked with a type system.
Instead type correctness has to be established during verification. The semantics
of data types is such that a type error introduces some kind of arbitrary state into
the proof obligation. Therefore a type error yields an unprovable proof obliga-
tion. In order to prove type correctness it is therefore sufficient to prove normal
termination for the hypervisor.

Only kernel code runs in kernel mode One of the most terrible programming errors
of an operating system is to execute arbitrary user level code with kernel mode
privileges. This can happen if the hypervisor forgets to reset the privilege level
on return to user code. It can also happen if the user manages to exploit a buffer
overflow inside the kernel. In order to prove that only kernel code runs in the high-
est privilege level one has to prove that nobody tampers with the return addresses
on the stack and that all control path that leave the kernel reset the privilege level
in the right way.

With security applications in mind it would also be very interesting to prove the follow-
ing.

Address space separation If one address space (read process) has access to memory of
another address space, then this memory has previously been explicitly mapped

3On the IA32 architecture virtual addresses, which are page-wise mapped to physical addresses, are
called linear addresses. Virtual addresses in the sense of IA32 (i.e., the addresses that appear in
the object code) are first subject to an address translation defined by the segment registers. This
translation yields a linear address which is further translated using the page directory. In practice
segments are not actively used so that virtual address and linear address are identical.

12



from one of the involved address spaces to the other one. This property ensures
that a legacy operating system cannot see the memory with the cryptographic keys
of the encryption module, unless there is a very stupid programming error in the
encryption module.

However, high level properties like this are currently not in our scope. We first have to
be successful with more basic properties.

In principle one would like to prove that, whatever code is running inside one of those
legacy OS’s, it is impossible to break the encryption of the encryption module. However,
this requires an attacker model which has not been considered yet in cryptography.
Typical attacker models in cryptography are such that the attacker has full access to
the messages on the internet and can additionally control some hosts there. What
we need here, is an attacker that is able to execute arbitrary code on the CPU that
runs the cryptographic engine. Because covert channels can only be minimised but
never completely avoided, the attacker can additionally observe the internal state of the
cryptographic engine at a very low bit rate. We are not aware of any work with such an
attacker model.

6 Conclusion

This paper outlines the Nizza security architecture that is further developed within the
Robin project in which Radboud University Nijmegen participates. The paper further
presents the approach that is followed in Nijmegen to verify some properties of the
micro hypervisor, which is currently developed as basis of the Nizza architecture. I also
discuss the special challenges of operating-system kernel verification and some interesting
properties we would like to verify.

References

[BCC+05] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools
and applications. International Journal on Software Tools for Technology
Transfer (STTT), 7(3):212–232, 2005.

[ECCH00] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Symposium on
Operating Systems Design and Implementation (OSDI 2000), San Diego, CA,
23–25 October 2000.

[Fes06] N. Feske. TUD:OS Demo CD. Available at demo.tudos.org, March 2006.

[FH03] N. Feske and H. Härtig. Dope - a window server for real-time and embedded
systems. In RTSS ’03: Proceedings of the 24th IEEE International Real-
Time Systems Symposium, pages 74–77, Washington, DC, USA, 2003. IEEE
Computer Society.

13



[FH05] Norman Feske and Christian Helmuth. A Nitpicker’s guide to a minimal-
complexity secure GUI. In 21st Annual Computer Security Applications
Conference (ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA, pages
85–94. IEEE Computer Society, 2005.

[HH01] M. Hohmuth and H. Härtig. Pragmatic nonblocking synchronization for real-
time systems. In USENIX Annual Technical Conference, Boston, MA, June
2001.

[HHF+05] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehn-
ert, and M. Peter. The nizza secure-system architecture. In Proceedings of
the 1st International Conference on Collaborative Computing: Networking,
Applications and Worksharing, San Jose, CA, USA, December 19-21, 2005.
IEEE, 2005.

[HPHS04] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro. Reducing tcb size by
using untrusted components: small kernels versus virtual-machine monitors.
In EW11: Proceedings of the 11th workshop on ACM SIGOPS European
workshop: beyond the PC, page 22, New York, NY, USA, 2004. ACM Press.

[HT] M. Hohmuth and H. Tews. The vfiasco project. Website www.vfiasco.org.

[HT03] M. Hohmuth and H. Tews. The semantics of C++ data types: Towards
verifying low-level system components. In D. Basin and B. Wolff, editors,
TPHOLs 2003, Emerging Trends Proceedings, pages 127–144. 2003. Technical
Report No. 187 Institut für Informatik Universität Freiburg.

[HT05] M. Hohmuth and H. Tews. The VFiasco approach for a verified operating sys-
tem. In Proceedings of the 2nd ECOOP Workshop on Programm Languages
and Operating Systems, Glasgow, 2005.

[Int98] International Organization for Standardization. ISO/IEC 14882:1998: Pro-
gramming languages — C++. International Organization for Standardiza-
tion, Geneva, Switzerland, September 1998.

[lon] longjmp, siglongjmp — non-local jump to a saved stack context. Linux man-
ual page.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Hen-
zinger, editors, Computer Aided Verification, volume 1102 of Lecture Notes
in Computer Science, pages 411–414. Springer, Berlin, 1996.

[Vel] T. L. Veldhuizen. C++ templates are turing complete. Available at cite-
seer.ist.psu.edu/581150.html.

14


